a2 United States Patent

Chari et al.

US009246945B2

US 9,246,945 B2
Jan. 26, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

TECHNIQUES FOR RECONCILING
PERMISSION USAGE WITH SECURITY
POLICY FOR POLICY OPTIMIZATION AND
MONITORING CONTINUOUS COMPLIANCE

Applicant: International Business Machines
Corporation, Armonk, NY (US)
Inventors: Suresh N. Chari, Tarrytown, NY (US);
Ian M. Molloy, Chappaqua, NY (US);
Youngja Park, Princeton, NJ (US);
Wilfried Teiken, Ossining, NY (US)

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 81 days.

Appl. No.: 13/904,350

Filed: May 29, 2013
Prior Publication Data
US 2014/0359692 Al Dec. 4, 2014
Int. CI.
GOGF 21/00 (2013.01)
HO04L 29/06 (2006.01)
GOG6F 21/31 (2013.01)
GOG6F 21/60 (2013.01)
U.S. CL
CPC ..o HO4L 63/20 (2013.01); GO6F 21/31

(2013.01); GO6F 21/604 (2013.01); GOGF
2221/2101 (2013.01)
Field of Classification Search
USPC e 726/1, 4
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,526,785 Bl 4/2009 Pearson et al.

8,209,742 B2 6/2012 Schreiber et al.
2002/0026592 Al 2/2002 Gavrila et al.
2008/0091681 Al* 4/2008 Dwivedietal. 707/9
2009/0222894 Al* 9/2009 Kennyetal.ccoocernrenne. 726/4
2009/0300711 Al 12/2009 Tokutani et al.
2011/0209196 Al* 82011 Kennedyccccocevvvernrennne.
2012/0023576 Al* 1/2012 Sorensen et al.
2012/0216243 Al* 82012 Gilletal.cccevvvrevrnrennn. 726/1
2012/0246098 Al 9/2012 Chari et al.
2013/0254833 Al* 9/2013 Nicodemus et al. 726/1
2013/0283339 Al* 10/2013 Biswasetal.ccccoor.... 726/1

OTHER PUBLICATIONS

“Taint-Enhanced Policy Enforcement: A Practical Approach to
Defeat a Wide Range of Attacks”; Xu et al; 15th USENIX Security
Symposium; 2006; pp. 121-136 of the Proceedings.™

(Continued)

Primary Examiner — Jason Lee
(74) Attorney, Agent, or Firm — Jeff LaBaw; Michael J.
Chang, LL.C

(57) ABSTRACT

In one aspect, a method for managing a security policy having
multiple policy items includes the steps of: (a) mapping per-
missions to the policy items which apply to usage of the
permissions so as to determine which of the permissions are
granted to groups of users by each of the policy items; (b)
identifying at least one of the policy items mapped in step (a)
that is in violation of least privilege based on a comparison of
an actual permission usage with the security policy; (c) iden-
tifying at least one of the policy items mapped in step (a) that
increases operational risk; (d) verifying that policy constructs
in the security policy are consistent with policy constructs
inferred from the actual permission usage; and (e) identifying
optimizations of the security policy based on output from one
or more of steps (a)-(d).

25 Claims, 7 Drawing Sheets

100

102 map permissions to the policy items so as to determine which of the

104

permissions are granted to groups of users by each of the policy items.

identify specific policy items that are in violation of least privilege from
the usage permissions and their reconciliation with the security policy.

L

106
\/\{ identify policy items which increase operational risk.

108 verify that policy constructs of groups and roles are consistent

with constructs inferred from actual permission usage.

identifying optimizations of the security policy.

110\/\{

US 9,246,945 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

J.H. Seltzer et al., “The Protection of Information in Computer Sys-
tems,” Proceedings of the IEEE, 63(9):1278-1308 (Sep. 1975).
Bishop et al., “We have Met the Enemy and He is Us,” NSPW ’08:
Proceedings of the 2008 workshop on New Security paradigms (Sep.
2008).

M. Frank et al., “A probabilistic approach to hybrid role mining,”
CCS ’09 (Nov. 2009).

Molloy et al.,, “Generative Models for Access Control Policies:
Applications to Role Mining Over Logs with Attribution,” Proceed-
ings of the 17th ACM Symposium on Access Control Models and
Technologies, SACMAT ’12 (Jun. 2012).

D. Blei et al., “Latent Dirichlet Allocation,” Journal of Machine
Learning Research 3, pp. 993-1022 (Jan. 2003).

McDaniel et al., “Securing Distributed Applications Using a Policy-
based Approach,” Ann Arbor, 48109-2122 (Dec. 2003).

Chen et al., “Data Mining and Service Rating in Service-Oriented
Architectures to Improve Information Sharing,” 2005 IEEE Aero-
space Conference, (Mar. 2005).

Molloy, “Automatic Migration to Role-Based Access Control,”
CERIAS Tech Report 2010-34, Purdue University Thesis Disserta-
tion/Acceptance (Aug. 2010).

Ene et al., “Fast Exact and Heuristic Methods for Role Minimization
Problems,” SACMAT ’08 Proceedings of the 13th ACM symposium
on Access control models and technologies pp. 1-10 (Jun. 2008).
Harrison et al., “Protection in Operating Systems,” Communications
of the ACM, vol. 19, No. 8 (Aug. 1976).

Lietal., “Access Control Policy Combining: Theory Meets Practice,”
Proceedings of the 14th ACM symposium on Access control models
and technologies SACMAT 09 (Jun. 2009).

Schneider, “Least Privilege and More,” IEEE Security & Privacy, vol.
1, Issue 5 (Sep. 2003).

* cited by examiner

U.S. Patent Jan. 26, 2016 Sheet 1 of 7 US 9,246,945 B2

100

102 map permissions to the policy items so as to determine which of the
permissions are granted to groups of users by each of the policy items.

10‘}\/\ identify specific policy items that are in violation of least privilege from

the usage permissions and their reconciliation with the security policy.

106 ‘L
identify policy items which increase operational risk.

v
IOM verify that policy constructs of groups and roles are consistent

with constructs inferred from actual permission usage.

110
N identifying optimizations of the security policy.

FIG. 1

Logs Policy

] PANNNNNNNNNNNNNY + allow
| SEESHEERERANRE N]

[] []
] 1 | - deny
[] TSRS |+ allow
N " ISSSNSSSSSSNSSY |+ allow
[] []

[] m + allow

FIG. 2A

U.S. Patent Jan. 26, 2016 Sheet 2 of 7 US 9,246,945 B2

Logs Policy
T 51 I e [—
...........
R I
R R
R I
R I
I I
FIG. 2B

FIG. 2D

U.S. Patent Jan. 26, 2016 Sheet 3 of 7 US 9,246,945 B2

Access
Control ::>

Policies

Policy hierarchy

FIG. 3

Identify redundant policy assignments

Identify overprovisioning Identify re:,dundant policy assignments
-overprovisioned policies Track policy changes
-overprovisioned user Attrlb}ltlon .

-overprovisioned groups Conflict detection

Identify overly generic policy items

FIG. 5

FIG. 4

correlating policy defined groups with
the roles implied from usage logs

FIG. 6

U.S. Patent Jan. 26, 2016

Obtain usage logs
702

y

For each user-permission, does
the user use the permission at
least t times?
704

Sheet 4 of 7

~]
[ew}
[«

|

The permission is not over-
provisioned
706

A 4

Obtain number of permissions that are
over-provisioned

The permission is over-
provisioned
708

The user is over-provisioned
714

A

YES

710
-

Is the number of over-
provisioned permissions greater
than fraction f?
712

Obtain number of over-provisioned users
718

The user is not over-provistoned
716

Is the number of over-
provisioned users greater than
fraction g?
720

The group is not over-provisioned
724

YES | The group is over-provisioned

722

Stop

FIG. 7

US 9,246,945 B2

U.S. Patent Jan. 26, 2016 Sheet 5 of 7 US 9,246,945 B2

Overly permissive policy items

800 Obtain policy items

802

h 4

Obtain list of all
resources
804

From usage logs get list of resources granted by
policy items
806

4
Obtain fraction of resources granted by policy
items but not accessed
808

Policy is overly
permissive
812

Is fraction greater than t?
810

Policy is not overly FIG. 8
permissive .

814

U.S. Patent Jan. 26, 2016

Sheet 6 of 7

Do the policy groups match the inferred roles?

900
Start

A

Read log data
902

A 4

US 9,246,945 B2

Divide log data into n
time windows
904

y

Mine roles from each
time window
906

+

Read policy data
908

Extract group structure
910

Compare groups with
mined roles
914

NO

A

l

For each group does
it have a matching role?
916

The use is in
compliance with the

group
918

Weight policy items in
groups using logs
912

The use is out of
compliance with the

group
918

FIG. 9

U.S. Patent Jan. 26, 2016 Sheet 7 of 7 US 9,246,945 B2

FIG. 10
‘/ 1000
f 1010
1020\ 1025\
Network To/From
Processor UF -+ Computer
Network
1030\ { *
Memory MediaI/F | Media 1050
l 1035 S
1040
- —\~ ———
!
| Display |
| |
L— ——————— '-'

US 9,246,945 B2

1

TECHNIQUES FOR RECONCILING
PERMISSION USAGE WITH SECURITY
POLICY FOR POLICY OPTIMIZATION AND
MONITORING CONTINUOUS COMPLIANCE

FIELD OF THE INVENTION

The present invention relates to security policy analysis
and more particularly, to techniques for correlating logs
detailing resource access with access control security policies
to ensure continued compliance of policy with high level
security objectives, optimizations of security policy based on
permission usage and the reduction of risk.

BACKGROUND OF THE INVENTION

Typically organizations have a high level security policy
which arises from regulations that the organizations are
required to comply with. This high level security policy is
translated into specific access control permissions or entitle-
ments for users on specific systems or applications. These
policies define explicit rules for authentication and authori-
zation (i.e., access control policies), and are enforced when-
ever a user requests access to resources.

Access control policies are created and maintained prima-
rily manually by security administrators. Maintaining secu-
rity policies is not only a huge work load for security admin-
istrators, but an incorrect policy can increase security risks
such as data leakage and compliance issues. For a large orga-
nization with thousands of employees and resources, the
number of policies can grow very large, and the policies can
get very complicated. Furthermore, it is extremely hard to
maintain the policies up-to-date as employees are added,
removed, and/or change their job responsibilities. In many
cases, security administrators have little insight on if the
policies are adequate for the organization’s purposes or how
the policies are actually used, etc. Further, at any given time,
there is no guarantee that the enforced policies correctly
implement the high level security policy which the organiza-
tion has to comply with.

To date there are no automated tools which can monitor the
usage of entitlements or permissions and continuously verify
that the usage is correctly reflective of the high level security
policy. While a number of tools exist to analyze static policies
(e.g., with role mining tools) these do not ensure that the
policy is optimized to reflect the actual usage of permissions.

Therefore, techniques for optimizing the security policy to
best reflect how permissions are actually being used as well as
to monitor the usage to ensure that it complies with the
intended security policy would be desirable.

SUMMARY OF THE INVENTION

Provided herein are techniques for correlating logs detail-
ing resource access with access control security policies to
ensure continued compliance of policy with high level secu-
rity objectives, optimizations of security policy based on
permission usage and the reduction of risk. In one aspect of
the invention, a method for managing a security policy having
multiple policy items is provided. The method includes the
steps of: (a) mapping permissions to the policy items which
apply to usage of the permissions so as to determine which of
the permissions are granted to groups of users by each of the
policy items; (b) identifying at least one of the policy items
mapped in step (a) that is in violation of the principle of least
privilege based on a comparison of an actual permission
usage with the security policy; (¢) identifying at least one of

25

30

40

45

50

55

2

the policy items mapped in step (a) that increases operational
risk; (d) verifying that policy constructs in the security policy
are consistent with policy constructs inferred from the actual
permission usage; and (e) identifying optimizations of the
security policy based on output from one or more of steps
(@)-(d).

A more complete understanding of the present invention,
as well as further features and advantages of the present
invention, will be obtained by reference to the following
detailed description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is a diagram illustrating an exemplary methodology
for managing a security policy according to an embodiment
of the present invention;

FIG. 2A is a diagram illustrating a 1 to n relationship where
apermission can be granted by multiple policies according to
an embodiment of the present invention;

FIG. 2B is a diagram illustrating a 1 to 1 relationship where
one policy accounts for multiple permissions according to an
embodiment of the present invention;

FIG. 2C is a diagram illustrating an n to 1 relationship
where one policy accounts for multiple permissions accord-
ing to an embodiment of the present invention;

FIG. 2D is a diagram illustrating an n to n relationship
according to an embodiment of the present invention;

FIG. 3 is a diagram illustrating an exemplary policy hier-
archy according to an embodiment of the present invention;

FIG. 4 is a diagram illustrating analytics for use in identi-
fying specific policy items that are in violation of least privi-
lege from the usage permissions and their reconciliation with
the security policy according to an embodiment of the present
invention;

FIG. 5 is a diagram illustrating analytics for use in identi-
fying policy items which increase operational risk according
to an embodiment of the present invention;

FIG. 6 is a diagram illustrating analytics for use in corre-
lating policy defined groups with the roles implied from usage
logs according to an embodiment of the present invention;

FIG. 7 is a diagram illustrating an exemplary methodology
for identifying over-provisioning (i.e., over-provisioned per-
missions, users, and groups) in a security policy based on
usage logs according to an embodiment of the present inven-
tion;

FIG. 8 is a diagram illustrating an exemplary methodology
for identifying overly permissive policy items in a security
policy based onusage logs according to an embodiment of the
present invention;

FIG. 9 is a diagram illustrating an exemplary methodology
for determining whether groups in the security policy match
roles inferred from usage (e.g., using role mining) according
to an embodiment of the present invention; and

FIG. 10 is a diagram illustrating an exemplary apparatus
for performing one or more of the methodologies presented
herein according to an embodiment of the present invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

Provided herein are techniques for reconciling the usage of
permissions or entitlements to an application or computer
systems with the goals of optimizing the security policy to
best reflect how permissions are actually being used as well as
to continuously monitor the usage to ensure that it complies
with the intended security policy. Policies should remain
up-to-date, maintaining least privilege, and using unambigu-

US 9,246,945 B2

3

ous constructs that reduce administrative stress. This prin-
ciple of least privilege is defined by J. H. Saltzer et al., “The
Protection of Information in Computer Systems,” Proceed-
ings of the IEEE, 63(9):1278-1308 (September 1975) (here-
inafter “Saltzer”), the entire contents of which are incorpo-
rated by reference herein. This principle states that users are
given only the minimum privileges that are required to
execute their functions. Saltzer argues that a least privileged
user, combined with fail-safe defaults, e.g., default deny, lead
to increased security. A number of analytics and heuristics are
described herein that address various aspects of reconciling
access control policies with security audit logs. A first set of
analytics identify from the usage of permissions and their
reconciliation with the security policy specific policy items
which are in violation of the principle of least privilege. A
second set of analytics identifies policy items which increase
the operational risk due to the potential consequences from
administrative or other errors. That is, these policy items are
correct as such, but may be redundant or in general have no
bearing on the final access control decisions for the resources
governed by these policy items. As such, they may lead to
errors when making policy changes resulting in unintended
consequences. A third set of analytics compares the con-
structs, such as groups or roles, inferred from the usage of
permissions, with the corresponding constructs in the policy
to estimate how closely the policy matches current usage.
Fourth, from the usage logs and the inferred roles, the devia-
tion of the user population over time is measured. This ana-
Iytic provides an indication of changes or flux in the user
population that may bring it out of compliance with the secu-
rity policy. Fifth, from these observations, optimizations of
the security policy are identified.

An overview of the present techniques is provided by way
of reference to FIG. 1. FIG. 1 is a diagram illustrating an
exemplary methodology 100 for managing a security policy.
As will be described in detail below, a security policy contains
multiple policy items which assign entitlements or permis-
sions to groups of users. Policy items may also be referred to
interchangeably herein as policies, policy profile(s) and/or
profile items. The term “groups of users™ refers to the con-
structs of the entitlements of the security policy as compared
to the roles inferred, e.g., from role mining procedures per-
formed on actual usage of the permissions. This group/per-
mission vs. role distinction will be explained further in the
description below. Permissions may also be referred to inter-
changeably herein as permission assignments, assighments,
and/or entitlements. As will be described in detail below,
access control decisions (or simply decisions) of the policy
items are used to grant, deny, or dictate some other relevant
action regarding permission requests to access a resource(s).

Risk mitigation in organizations depends on verifying
compliance, i.e., verifying that at any given time, the usage of
permissions granted to users, by the enforced security policy,
is consistent with the high level security goals that the orga-
nization is trying to meet. A typical layering of security poli-
cies in organizations is described, for example, in Bishop et
al., “We have Met the Enemy and He is Us,” NSPW °08:
Proceedings of the 2008 workshop on New Security para-
digms (September 2008) (hereinafter “Bishop™), the entire
contents of which are incorporated by reference herein.

In the terminology of Bishop, the Oracle security policy
corresponds to the high level security policy that the organi-
zation is trying to meet. The Feasible policy is that which can
be defined and encoded by the system. The Feasible policy
must be encoded and enforced by some system, e.g., an access
control product that may define its own model. The Model

10

15

20

25

30

35

40

45

50

55

60

65

4

policy layer is introduced herein as a subset of the Feasible
policies that can be encoded and enforced through the secu-
rity products.

The Configured policy is what is currently configured in
the security framework and the Enforced or Used policy is the
policy that is actually being enforced and reflected in the
usage of the permissions. Bishop argues that a number of
security vulnerabilities and breaches occur because of the
mismatch in these policy layers.

A goal of the present process is to define techniques to
verify and minimize the distance between policy layers, i.e.,
the Used policy closely implements the Oracle policy by
comparing the Used and Model layers directly. To verify
compliance, tools and techniques described herein are com-
bined with reasoning that the Model policy correctly approxi-
mates the intended high level policy. This can be done induc-
tively as follows: first initially verify through automated
analysis and reasoning that the Configured policy is consis-
tent with the Model policy. After this, continuous verification
is used to ensure that: 1) usage is consistent with the Config-
ured policy; and ii) the policy constructs are being used con-
sistently and continuously by the user population. Together,
these steps are the evidence the present methodology pro-
vides that the usage of permissions is compliant with the
Model and hence the intended high level policy.

Verifying the continuous compliance of usage to the
intended policy has many distinct benefits to the security
administrator. Foremost is the general reduction in opera-
tional risk due to the assurance that the usage is consistent
with the intended policy. With the present techniques, the
security policy is verified to be fresh and up-to-date, and it is
ensured that the security policy accurately reflects the current
needs and behaviors of users, and maintains least privilege. A
number of the analytic techniques described herein also
reduce the ambiguity in policies by verifying that policy
entries are not redundant or overly expressive. This simplifies
the administration of policies and reduces assignment errors
made by administrators when assigning and revoking assign-
ments.

Prior to analyzing the given security policy, in step 102, the
permissions are mapped to the policy items so as to determine
which of the permissions are granted to the groups of users by
each of the policy items. As will be described below, each of
the permissions may be granted to each group of users by one
or more of the policy items. Thus, the mapping performed in
step 102 is done to identify these policy-permission relation-
ships in the security policy so as to enable analysis and opti-
mization of the policy.

Specifically, as illustrated in FIGS. 2A-D, there are six
possible relationships between policies and executed permis-
sions. Namely, there are a number of different scenarios
regarding policies and applicable actions. For instance, a
given policy can grant a permission request, or alternatively it
can also deny, defer, throw an error, etc. Further, when there
are multiple policy items pertaining to a particular resource
(see, for example, FIG. 2A, described below) the different
policy items might dictate conflicting actions. For instance
one policy item might allow the request, while a second
policy item might deny access to that same resource. With that
in mind, FIG. 2A depicts a 1 to n relationship where actions
regarding a permission can come from multiple security poli-
cies. As highlighted above, different policy items might dic-
tate conflicting access control decisions with regard to the
same permission request. Thus, using a simple example
where a (+) symbol is used to denote the grant of a permission
request and a (=) symbol is used to denote the denial of a

US 9,246,945 B2

5

permission request, F1G. 2A illustrates how multiple policies
can apply to conflicting actions for the same request.

FIG. 2B depicts a 1 to 1 relationship where one policy
accounts for one permission. In the example shown in FIG.
2B, the policy might grant, deny, defer, etc. the action (i.e.,
permission request)—see above. However, since there is a 1
to 1 relationship, there are no conflicting policies present.

FIG. 2C depicts an n to 1 relationship where one policy
accounts for multiple permissions. Again, the policy might
grant, deny, defer, etc. the actions (i.e., permission
requests }—see above.

FIG. 2D depicts an n to n relationship. Here, as with FIG.
2A (described above), different policies might dictate difter-
ent actions for the same request. Namely, as shown in FIG.
2D, some of the policies apply to the same permission
request, i.e., there are some permissions that are governed by
multiple policies. As described in the simple example above,
one of the policies governing a particular permission might
grant the permission while another policy denies the same
permission request. These are conflicting policies.

Policy and user hierarchy construction are now discussed.
Policy hierarchy construction—access permission policies
state a set of triples of {user, resource, access method}. In
typical systems, a single policy item can govern the granting
or denial to a group of users the right to access a group of
resources. If this is present then one can construct a hierarchy
from the various policy items: a policy item subsumes another
ifitis applicable to the same set of users but governs the right
to more resources. Alternatively we could simply consider a
policy hierarchy over resources governed by the items, or we
could consider a policy hierarchy over the users governed by
the policy items. A policy item which subsumes another is
said to be the super-policy and the subsumed policy is the
sub-policy.

Furthermore, user policies and group policies are also
determined. Some policy items are applied directly to speci-
fied individuals (e.g., clear nodes in FIG. 3) and these are
called user policies. FIG. 3 is a diagram illustrating an exem-
plary policy hierarchy. In typical systems, policy items are
sometimes assigned to users indirectly through assignment of
users to intermediary groups or roles and the assignment of
permissions to these groups or roles. Such policies (e.g.,
black nodes in FIG. 3) are called group policies.

User hierarchy construction—many organizations support
role-based access control to reduce the number of users to
maintain in the policy. A role typically includes a group of
users who use similar permissions. A hierarchy of users and
groups can be constructed from the user-group membership
information. A group can subsequently belong to another
group. Note that there are various conventions or semantics
regarding the inheritance implied by such hierarchies and
these should be taken into account during the analysis.

The present techniques then analyze a set of permission
usage logs and determine (from matching policies) the actual
policy item whose access control decision was used to grant
the permission requests. Matching policies are the policies
that have the same resource name as the one used in the
permission or the policies of which resources subsume the
one used in the permission. There can be multiple matching
policies, and various systems have different policies regard-
ing which policy item among the (multiple) matching policies
has precedence, e.g., in some instances the most specific
policy is consulted to grant/deny permission, in others it is the
first policy item that matches, and yet in others it is the most
permissive policy item. Any or all of these analytics can be
adapted to the present techniques as long as the precedence
rules are known.

10

15

20

25

30

35

40

45

50

55

60

65

6

According to the present techniques, optimizations of the
security policy can be identified based on the policy-permis-
sion relationships mapped in step 102 and/or based on how
the permissions are actually being used (by the groups of
users) based for example on usage logs which are indicative
of how the permissions are actually being used. Thus, refer-
ring back to FIG. 1, in steps 104 and 106 optimizations of the
security policy are identified based on i) the mapping per-
formed in step 102 and/or ii) usage logs of the groups of users.
Namely, in step 104, specific policy items that are in violation
of least privilege are identified from the usage permissions
and their reconciliation with the security policy. By way of
example only, this can include identifying redundant policy
assignments, identifying overprovisioning (i.e., overprovi-
sioned policies, users and/or groups), and identifying overly
generic policy items. In step 106 policy items which increase
operational risk are identified. By way of example only, this
can include identifying redundant policy items, tracking
policy changes, attribution, and conflict detection. These ana-
Iytics are described in further detail below. Next, based on the
analysis performed in steps 102-106, optimizations of the
security policy are identified in step 110. This can involve, for
example, correlating policy defined groups with the roles
implied from usage logs (using, e.g., role mining). This opti-
mization process will be described in detail below. The fol-
lowing definitions are used in the description:

Definition 1. A policy profile is a-consistent with usage, if a
percentage of the total granted authorizations have been
used within a given time window. (a,t,t')-consistent may be
written to make the time window [t,t'] explicit.

A policy profile may be an individual permission that grants

access to multiple resources (for example, granting access to

a database that grants access to the individual tables and

columns), or a group permission that aggregates multiple

individual permissions.

Definition 2. A profile is unused in the time window [t,t'], if
the user never attempts to perform an action that requires
evaluating the profile.

Note that an unused profile may be applicable to a request

made in [t,t'], but there exists a more specific profile that is

evaluated instead.

Definition 3. A profile is a-generic, if a percentage of the
resources it protects are never accessed by the user. One
might say a profile is too generic if a exceeds a threshold e.

Definition 4. A group is §-over privileged, if it contains pro-
files not used by more than [} percentage of the group
members.

Definition 5. A profile p is applicable to a request r if p(r)
returns a decision.

Definition 6. Given a policy P and a profile item p, an admin-
istrative revocation has ambiguous intent if for all requests
r that P is applicable to, p(r)=P(r)=P\{p}(r), and similarly
redundant for an assignment p(r)=PU{p}(r).

A set of conventions and examples of policy, resources, and
usage data that are exemplary, and which will aid the expo-
sition of the analytic is now described.

A natural grouping of resources is hierarchical in many
systems. For example a dataset in z/OS is represented as a
period-delimited path. Discrete profiles are those that explic-
itly reference the full dataset name, e.g., A.B.C.DATA, while
generic profiles refer to groups of resources described using
the following wildcards.

%: a single character, e.g., A.B.C.% ATA matches the above.

: more than one character, but not the period, e.g., A.B.C.
matches the above, but A.B.* does not.

*%: more than one character including the period, e.g., A.B.**
matches the above.

US 9,246,945 B2

7

In all instances, the high-level qualifiers cannot contain
wildcards, i.e., ** DATA is not valid. In a Unix or Linux-like
system a file system is separated by the forward-slash (/)
where the question mark character (?) represents a single
non-forward-slash character, and a * represents zero-or-more
non-forward-slash characters. Similarly, in Windows the
backslash character is used instead of the forward-slash. Most
operating systems, applications, and security subsystems can
log when a user exercises a permission. We assume that we
are able to identify which policy profile(s) specified a specific
action. For example, in some systems, such as RACF, we are
able to pin-point the single policy item that governed the
action decision. In other cases, with access to the policy, this
can be accomplished by evaluating the policy.

As described above, the optimization opportunities for the
security policy may be identified from the security policy
itself (e.g., by analyzing the policy and associated permis-
sions (mapped, e.g., example as per step 102 of FIG. 1) and/or
from the security policy in conjunction with usage patterns,
i.e., from how the permissions are actually being used. These
policy analytic techniques are now described in further detail.

As described in conjunction with the description of step
104 of FI1G. 1, above, specific policy items that are in violation
ofleast privilege can be identified from the usage permissions
and their reconciliation with the security policy. This is per-
formed using a first group of analytics. See FIG. 4. As will be
described in detail below, the present analytics can be used to
provide insights using the following steps: (a) Identification
of redundant policy assignments: this occurs when the deci-
sions specified by policy items are always covered by other
policy items which have a higher priority in the access control
decision—such items can result in entitlements not being
correctly revoked and may violate least privilege if the super-
seding policy items are then revoked; (b) Identification of
policy overprovisioning: this is to identify when a policy item
is never or rarely used—this could represent an over-provi-
sioning policy item (similarly we can identify overprovi-
sioned users, i.e., users who have privileges that they rarely
use, and similar analysis can be applied to find overprovi-
sioned groups); and (c) Identification of overly generic policy
items: policy items which are too generic and can be repre-
sented by combinations of more specific policies.

Identifying Redundant Assignments: redundant profile
authorities occur when a user is assigned two profiles where
one profile subsumes the other, making the more specific
authority redundant. A profile subsumption relation is defined
as in the following:

Definition 7. A profile p, subsumes profile p, ifp, appears in

a path from the root to p, in the policy hierarchy.

For illustrative purposes only, in the case of RACF, profile
C.* ** gubsumes C.D.E.*.** and V.** subsumes V.* F* **,
respectively. Inthese examples, C.D.E.* ** and V.* F* ** are
redundant policies, as all of the permissions that the two
profiles authorize can be granted by their subsuming profiles.
These redundant profiles are unnecessary and only increase
the complexity and maintenance burden of the policy. Fur-
ther, having redundant policy profiles can lead to errors when
assignments are removed. When a permission assignment is
removed from a user, all subsumed policies should be evalu-
ated and the administrator notified of possible omissions.

To detect redundant profile assignments, all assigned
entitlements for a user are collected, and it is determined if
there are any two entitlements in which one subsumes the
other. Profile subsumption relationship can be efficiently
detected using the policy hierarchy described above, and thus
this analytic can be applied to any policy domain where the
resources are hierarchically organized and policy is inherited.

20

40

45

55

8

There are a number of insights we can learn from policies
which assign redundant entitlements to users. For instance, if
the fraction of users with redundant entitlements is higher
than some pre-defined threshold t, it indicates that security
administrators may not perform redundancy checks when a
user is assigned multiple entitlements. This indicates poten-
tial problems with the entitlement provisioning process
where inconsistent tools are being used or that these tools do
not perform redundancy checking, since manual verification
of entitlement redundancy is not feasible given the number of
entitlements and users. Other analytics are described herein
where a user’s configured policy is correlated with a user’s
actual access patterns, and used to identify which profiles
among the redundant profiles control resources that the user
actually uses the most. Combined with that analytic, an opti-
mal set of profiles can be generated for the user without
redundant profile assignments.

Identifying Policy Overprovisioning: This set of analytics
correlates the usage of permissions to the policy definitions
and simply counts which policy items are relevant, i.e., actu-
ally authorize an access request. For instance, relevant policy
items can be identified as those policy items which were used
during a given time period to authorize a permission/access
request. Conversely, non-relevant policy items are those
policy items which permit access to some resources but have
not been used to authorize any access requests during the
given time period. By analyzing how frequently a policy item
was relevant, and over what time period, there are many
questions we can answer, for example, which policy items are
most frequently used or which are used for the longest time
frame, e.g., more generic policy items, or more specific items.
From this we can learn which policy items are most relevant
over time. We identify policy over-provisioning by identify-
ing over-privileged users and groups.

Identifying Over-Privileged (Over-Provisioned) Users: a
policy profile is considered to be an over-assignment for a
user if the user never or rarely uses (e.g., less than a threshold
number of times over a given time window, see for example
Definition 2, above) the profile, and a user is considered an
over-privileged user if the user owns many (e.g., over a
threshold number of) over-assignments. It is not feasible for
the security administrators to predict possible over-assign-
ments beforehand, and thus there can be a large number of
unintended over-privileged users, resulting in a suboptimal
policy.

Over-privileged users can be discovered by correlating
access logs and the policy by measuring the number of
resources the users have access to that they are not leveraging.
This provides a measure of how far away the policy is from
least privilege. By comparing the amount of over privilege to
the number of distinct resources the user actually accesses we
gain a normalized view score of the amount of over privilege.
This gives us one key measure for how far the usage is
diverging from policy and thus the least privilege principle.

Identifying Over-Privileged (Over-Provisioned) Groups:
Overly permissive groups are the groups of which many
members rarely (e.g., below some pre-defined threshold) use
the permissions granted to the group. Thus, for example, it
can be determined whether a user in a given group is over-
provisioned with respect to the permissions of the given
group by identifying if the user does not use, or uses less than
a pre-determined threshold number of times, more than a
pre-determined threshold fraction of the permissions
assigned to the given group. A user who does not use any of
the group policies or uses only few (e.g., below some pre-
defined threshold) policies may be over-provisioned, and the
policy with these over-provisioned users violates the prin-

US 9,246,945 B2

9

ciple of least privilege. Given a time window of interest, we
can monitor how often each member of a group executes the
policies assigned through the group to determine the fraction
f, such that the group is f-overprivileged (see Definition 4
above). This gives us a measure of the over provisioning of
user and divergence of least privilege. Further if users are not
leveraging the assignments they gain from groups, itindicates
the group structure does not match the needs of the users well,
and the group assignments have diverged from the needs of
the users.

For each group defined in the policy we compute the frac-
tion of users in the group who are overprovisioned as evi-
denced by the permission usage logs. For each group g this
determines the highest value of f for which the group is
f-overprivileged. If this fraction is higher than some prede-
termined threshold t, we can mark this group as over-privi-
leged and potentially, re-organize the group or the privileges
assigned to the group.

Identification of Overly Generic Policy Items: Another set
of analytics to detect if the security policy violates the least-
privilege principle is the identification of policy items which
are overly generic. Specifying access control policy at each
individual resource level makes the size of the policy unman-
ageably large. Thus, most of the policies are represented as
generic profiles using wildcard symbols such as % and * to
cover multiple resources. While more generic profiles reduce
the number of profiles and thus decrease the maintenance
burden for security administrators, these generic profiles
become overly permissive and increase the security vulner-
ability.

According to an exemplary embodiment, a given one of a
policy item(s) which is/are overly permissive in the number of
resources to which the policy item(s) grants access, and thus
is in violation of least privilege, can be identified by deter-
mining if more than a first pre-determined threshold fraction
of'users who are granted access to one or more of the permis-
sions through the policy item(s) use less than a second pre-
determined threshold fraction of the permissions granted by
the policy item(s) within a certain given period of time.

To identify if a specific policy item is overly generic, the
expressiveness of the resource specified in the policy, i.e., the
number of resources that the policy expression refers to, can
be reconciled with the actual resource to which access was
granted. With the permission usage data, overly permissive
generic profiles can be identified by examining all the
resources accessed by the profiles, and by generating the most
specific generic profile name that covers all of the accessed
resources in a bottom-up way. If the defined profile is more
generic than the generated profile name, then the policy is
considered overly permissive. If the resource hierarchy is
known in advance, then we can quantify how much more
generic the policy item: this can be the ratio of the number of
resources covered by the policy profile and the number of
resources in the defined profile. A ratio of 1 is when the policy
profile exactly matches the usage with higher numbers indi-
cating the amount of over-provisioning. When access logs
over a long time period are available, these dynamically gen-
erated profile names can be very reliable, and can be used to
rewrite the overly permissive profiles with a lower scope.

By identifying overly permissive policies, one can measure
the deviation from least-privilege and identify permissions
that may be redefined to reduce their scope and reduce risk.
For example, if a permission is used frequently (greater than
athreshold n per time period), for access to a small number of
resources, (for example below a fixed threshold fraction of the
number of resources specified in the policy), compared to
what is allowed in the policy, then it is overly-permissive. In

10

25

30

40

45

10

this case, the resources can be represented in a more specific
profile as proposed by the present system.

As described in conjunction with the description of step
106 of FIG. 1, above, policy items are identified which
increase operational risk. This can be done using a second
group of analytics. See FIG. 5. This second group of analytics
targets those policy items which are prone to lead to admin-
istrative error when policy changes are made or new provi-
sioning actions are taken. These methods include (a) Identi-
fication of redundant policy items as described above; (b)
Tracking of policy changes: this is to ensure consistency in
intent so that the revocation or granting is correctly reflected
in the resulting policy; (¢) Attribution: this will ensure that the
attributes of newly granted users are consistent with those
already assigned given entitlements; and (d) Conflict Detec-
tion: this will identify policy items that yield conflicting
results for an access decision, such as where the method for
combining multiple policy items (e.g., first applicable, most
specific, allow overrides) results in a different final decision.

Tracking of Policy Changes: User entitlements change
over time, as new entitlements can be assigned or existing
entitlements get revoked. This analytic is used to monitor how
policy assignments change over time. In particular, the fol-
lowing two questions are addressed:

Are users mostly (above a certain given percentage of
policy change actions) granted new entitlements, or are
policy assignments often revoked?

When a policy assignment is revoked, are all the redundant
policies also revoked?

The failure in the latter case indicates incomplete revoca-
tions. The policy hierarchy enables automatic identification
of'incomplete revocations in a straightforward manner. When
a profile is removed for a user, all of the subsuming policies
areretrieved from the hierarchy, and it is verified whether they
are still authorized for the user.

Inferring Policy Changes from Logs: while an analysis of
the policy alone can indicate when policy changes are made,
permission usage logs can provide subtle insights not present
in the policy change logs. For example, if a policy rule
changes, how does that impact the actual usage of the users?
Access control decisions are tracked to datasets across time to
detect changes in the policy and measure how the changes
may impact the end users. This analysis is extended to use
allowed or denied user actions as a precursor to policy
changes.

To accomplish this, the access logs are analyzed to produce
atemporally ordered list of user requests and note several key
details. First, the decision, e.g., SUCCESS or INSAUTH
(insufficient authorization) is noted, which indicates when a
privilege was allowed or denied. Any change in the access
control decision correlates with a grant or revoke operation.
Next, the policy item(s) used to handle the request is noted,
even when the access control decision does not change. Since
we have assumed that either the system directly provides us,
or we can infer the policy items(s) used to make access
decisions, inferences can be made on the types of policy
changes that occurred. Given the precedence rules in the
security policy, it can be determined if a policy item was
added or removed. For example, when the most specific
policy item overrides and a more specific policy item was
used (e.g., for an allow), one can argue that the administrator
is reaffirming the user’s access to those resources (albeit
including a potentially redundant assignment), while a more
generic profile indicates the user’s profile was revoked. If the
decision does not change, then the administrative intent was
ambiguous.

US 9,246,945 B2

11

Next, any requests where the applied profile for an access
decision changes is analyzed. If the policy item changes, it
implies there was a policy change. Next, given the policy item
preference (such as first applicable or most specific), it can be
determined if the access profile item changed due to the
addition of a new policy item, or the removal of an old policy
item. For example, given a most-specific precedence, the
change to amore general rule implies an old rule was revoked.
If the access decision does not change, there is an indication
that administrator’s intent was not correctly applied to the
policy, possibly resulting in an error. Further, a change from a
positive (grant) to a negative (deny) or vice-versa can have
different connotations if a rule was added or removed.

The results of the analytic can be used to cleanse the policy
of items which can lead to erroneous administrative actions.
This analytic is designed to detect possible policy items that
may result in administrative errors, as above, that are invoked
by the end users, that is, the realization of such errors. As
above, this analytic will depend on the policy combining rule
used by the security policy, which is used to determine if a
rule was added, or removed, from the policy. When a rule was
added or removed that does not change the decision, it is
possible the administrator’s intent is not being correctly
reflected, as they have either added a redundant rule, or
revoked a rule that resulted in the same level of access.

If the profile item changes, it implies there was a policy
change. Next, given the policy item preference (such as first
applicable or most specific), it can be determined if the access
profile item changed due to the addition of a new policy item,
or the removal of an old policy item. For example, given a
most-specific precedence, the change to a more general rule
implies an old rule was revoked. If the access decision does
not change, there is an indication that administrator’s intent
was not correctly applied to the policy, possibly resulting in
anerror. Further, a change from a positive (grant) to a negative
(deny) or vice-versa can have different connotations if a rule
was added or removed.

Attribution of Policy Items: This analytic attempts to verify
that the user being assigned an entitlement is similar to other
users who have similar or the same entitlements. We measure
the similarity between the new candidate user and the existing
users by measuring how close they are (as specified in a
distance function below) on a chosen set of security relevant
attributes. For some key attributes, such as department and
division, the distance can be measured as an exact match, or
how far apart the values are according to the organization’s
internal structure, e.g., reporting structure. For other
attributes, such as a job title, a domain specific distance will
be applied. An aggregate distance function is a domain spe-
cific value that combines the distance measure across each
attribute of the user. A user is considered too different for the
entitlement compared with the other assigned users if (a) the
distance for any single attribute exceeds a threshold t; (b) the
aggregate distance exceeds a given threshold t; or (c) at least
n attributes are not within a threshold t.

The attribute compliance for the user can also be estimated
using a machine learning classifier such as a support vector
machine (Vladimir N. Vapnik, Statistical Learning Theory,
Wiley-Interscience, September 1998. ISBN
9780471030034), logistic regression (David W Hosmer;
Lemeshow, Stanley (2000), Applied Logistic Regression
(2nd ed.), Wiley. ISBN 0-471-35632-8. These processes take
a set of users and their attributes, where some users are
granted the entitlement, and some users are not, and produce
a model of the users who are assigned the entitlement. The
attributes can be first converted into a feature set, such as a list
of boolean value. If the trained classifier predicts the new

10

15

20

25

30

35

40

45

55

60

65

12

candidate user should not have the entitlement, we alert the
administrator of the potential error.

Conflicting Policy Item Detection: A security policy can
viewed as the result of multiple individual provisioning
actions that are combined to produce a final access decision
for a request. When an administrator views a small number of
policy items, the interaction of multiple items may become
ambiguous to the administrator who incorrectly interprets
how the policy items will interact and be combined for the
final decision. When there are multiple policy items that all
pertain to the same action on the same resource that return
different decisions, there are precedence rules that determine
which rule gets evaluated or how the decisions of the rules are
combined to produce a final decision. While the interaction of
these policy items may be correct in the current version, this
is a potential candidate for administrator error when policy
items are added, removed, or altered. We count and flag such
combinations as potential error in the current or future incan-
tations of the security policy.

As described above, based on the analysis performed in
steps 102-106 of FIG. 1, optimizations of the security policy
can be identified which can involve correlating policy defined
groups with the roles implied from usage logs (using, e.g.,
role mining) (step 108). This can be done using a third group
ofanalytics. See FIG. 6. This third group of analytics attempts
to verify that the policy constructs of groups and roles are
consistent with similar constructs that can be inferred from
the actual permission usage. This ensures that the roles and
groups in the policy correctly map to roles and tasks the users
perform as a part of their duties.

Correlating Policy Defined Groups with Roles Implied
from Usage Logs: as described, for example, in conjunction
with the description of step 106 of FIG. 1 above, the actual
usage of permissions by the groups of users can be analyzed
using role mining procedures which seek to discover implicit
roles from permission usage patterns. Specifically, the ana-
Iytic provided herein for veritying if the Configured policy is
consistent with its Enforced or Used policy is to validate if the
group definitions in the policy (i.e., explicit roles) are cur-
rently relevant and reflect the actual roles the group members
assume (i.e., implicit roles). Users’ actual roles can be
inferred from logs of the permissions usage, using role min-
ing techniques. See, for example, M. Frank et al., “A proba-
bilistic approach to hybrid role mining,” CCS *09 (November
2009) (hereinafter “Frank™) and Molloy et al., “Generative
Models for Access Control Policies: Applications to Role
Mining Over Logs with Attribution,” Proceedings of the 17
ACM Symposium on Access Control Models and Technolo-
gies, SACMAT °12 (June 2012) (hereinafter “Molloy”), the
entire contents of each of which are incorporated by reference
herein. This section presents analytic methods to test if the
policy groups correspond to actually assumed roles. If the
mined roles differ significantly from the defined groups, this
indicates that the policy’s group definition is, perhaps, no
longer relevant and the usage may be considered to be not
compliant.

Role Mining: the generative role modeling approach
described in Molloy is applied herein to discover the implicit
roles from users’ access patterns. Molloy uses Latent
Dirichlet Allocation (LDA) to mine roles from access logs.
See, for example, D. Blei et al., “Latent Dirichlet Allocation,”
Journal of Machine Learning Research 3, pgs. 993-1022
(January 2003) (hereinafter “Blei”), the entire contents of
which are incorporated by reference herein. The technique
attempts to explain how the observations (i.e., use of entitle-
ments) were generated given certain hidden parameters (i.e.,
roles) in the following way.

US 9,246,945 B2

13

Each user is modeled as a finite mixture over an underlying
set of roles, and each role is in turn modeled as a distribution
over profiles. LDA assumes the following generative process
in which a user u is created:

1. For each user uel, a distribution over roles is sampled
from a Dirichlet distribution, 6: Dir (a)

2. For each profile p used by a user, select a role, z, accord-
ing to the distribution, Multinomial (6)

3. Finally, a profile is chosen from a multinomial probabil-
ity distribution over profiles conditioned on the role, p (p\z, p.

The role mining system produces two probability distribu-
tions—a probability distribution over the roles for each user,
and a distribution over profiles for each role. For the following
description, the set of distribution vectors for various models
m:®P, ={¢,, IreR, } where each ¢,, . is one probability distri-
bution for a role r out of the set or roles R, for the model m is
being used. The discrete roles from Molloy are used.

Consistency of Mined Roles: before comparing the roles
mined from usage logs with the groups in the security policy,
it is preferable to ensure that the roles obtained are consistent
over time. To validate this, generative models are generated
from access logs across different periods in time and the
similarity between these models is evaluated.

Let ®,, be the probability distribution of the mined roles
over permissions for a model m. @, will be used to denote
the probability distribution for the p-th model generated from
the g-th period (1=p=10 and 1=q=4 in this experiment). For
validation, the models within each period were compared as
well the models for different time periods.

Definition 8. An Optimal Role Mapping is the mapping of all
roles in a model m onto the roles of model m' (ie., a
permutation s over the role indices) so that the aggregate
root-mean-square error (RMSE) for a vector-wise com-
parison is minimized:

k
> RMSE(@is bt iy | i € Pon bt i) € Dy
i=1

Definition 9. The distance between models m and m' (D®,,,,
@,) is the aggregate RMSE for a vector-wise comparison
given an optimal role mapping between m and m'.

By evaluating how the distance between these two models
increases or decreases over time, one can measure the change
in user behavioral roles. If the distance exceeds some thresh-
old, t, then the user population has changed (and the groups
and roles in the security policy are considered non-compliant
and can be marked as such) and to maintain in compliance the
behavioral shift must be corrected or the behavioral changes
should correspond with a change in the security policy. While
the roles of the user population remain stable, we do not
expect extensive changes in the security policy.

Comparison of Defined Groups and Mined Roles: after
ensuring that the mined roles are stable, the mined roles are
compared to the groups defined in the policy. This helps
measure if the defined groups are relevant, i.e., do the mined
roles and the profile distributions they represent match the
way the profiles are linked to groups. Groups and roles were
compared by comparing probability distributions represent-
ing the expected activity (i.e., the distribution across the exer-
cised profiles) for both groups and roles. For inferred roles,
the probability distribution can be extracted for the i-th model
for the g-th period from the LDA model @,=®, =

{q)iq,rlrERiq} .

5

10

15

20

25

30

35

40

45

50

55

60

65

14

For groups, the probability distribution can be created
based on the usage information from the audit logs. For each
logged resource access for a user, the list of groups that may
grant the user access to this resource is determined. The audit
logs contain the profile granting access, so this is done by
finding all groups to which the user is assigned that are linked
to the user profile. All accesses are aggregated per group,
resulting in a vector describing how often a profile was used
to grant access to a resource. The aggregation is aligned to the
time periods used to create the LDA models. These aggregate
usage counts are normalized to obtain the probability distri-
bution over the profiles for each group. Thus, a set of prob-
ability distributions @, , is obtained, where g is the group id
and q is the period number. Each one of these probability
distributions can now be compared to all the roles for all
models in the same period q.
Definition 10. Candidate role ¢ (¢, ,®,,) for a group prob-

ability distribution and a model for the same time period is
the role r minimizing RMSE(¢, ,®,,). Candidate role
distance is the RMSE between the candidate role and the
model probability distribution for the corresponding
period.

Candidate roles represent the most likely matching mined
roles for a group. Candidate role distance can be used to
estimate if a group has a properly matching role. The goal is
to define a threshold to determine if a candidate role is likely
to be the mined equivalent of the defined group.

Definition 11. Candidate role set for a group g is the set of all
candidate roles for all probability distributions for the
group and their corresponding models:

C(@)~{ el D) 15g=4 " 12i<10}

Candidate role sets represent the possible matches for a
group across multiple time periods in multiple iterations of
the role mining. By examining candidate role sets, it can be
determined whether a group is consistently matched (or
unmatched).

When the distance between the defined groups and
observed roles is small, e.g., below a threshold t, then the user
behavior still matches the security policy, and we can con-
sider the groups valid for the observed behavior. Otherwise,
we do not consider a group to be a valid candidate for the
observed behavior, and the distance measure can be used to
measure the amount of deviation. This indicates these groups
may need to be evaluated for compliance. In these instances,
we consider the number of actions mapped to each group or
role. When the number of actions is low, it may be an indica-
tion the role is infrequently used.

The analysis performed on the audit log data can be used to
confirm if the following hypotheses about the relationship
between groups and inferred roles are true:

Groups that are frequently used and consistent with usage
are clearly identified based on the chosen threshold param-
eters. While this analytic easily generalizes across other data
sets, it is expected that the actual thresholds will vary across
datasets and can be obtained with some experimentation.

Groups that are frequently used but identified as inconsis-
tent with use show high overlap with other groups in terms of
use. Such groups are good candidates for potential re-engi-
neering to better match the actual use. Once the correct
adjustments to the group design are determined an evaluation
can be made as to whether further analytics can be used to
support the redesign process based on best practices created
in cooperation with the administrators. If there are groups
which are rarely used and are a poor match with the mined
roles, then their relevance must be hand-validated by admin-
istrators.

US 9,246,945 B2

15

Policy Optimization Based on Analytic Insights: Based on
the results of the analytics for least-privilege analysis, policy
items which may lead to administrative errors, and the rec-
onciliation of policy constructs with usage, we can perform or
suggest a number of optimizations which can yield policies
that match high level security goals. Any changes in the
policy must be performed with administrative review in order
to best reflect the characteristics of the domain at hand. For
example, ensuring the availability of access in some domains
may be more important while ensuring the confidentiality of
the data is more important in others.

The following are some of the suggested optimization
actions based on the analytics described above:

f. Identified redundant policy assignments: These are good
candidates for policy optimization because they don’t
impact the final authorizations. It is suggested the
administrators eliminate all but one of the redundant
assignments (and thereby effectively eliminating/drop-
ping all of the redundant assignments).

g. Identified policy overprovisioning: When confidential-
ity of the resources is important, the over-provisioned
policy items should be eliminated to reduce the risk of
disclosure. For instance, non-relevant policy items
should be eliminated. In some domains some authoriza-
tions are used seasonally, or availability of access is
important, and it may be necessary to maintain the over
provisioned policy items. One possible mitigating mea-
sure if to perform audits when the overprovisioned
authorizations are used. With regard to over-provisioned
users, the permissions for which the users are over-
provisioned (i.e., the permissions which the users do not
use, or use less than a pre-determined threshold number
of times during a given time period—see above) should
be revoked to maintain least privilege. With regard to
over-provisioned groups, the users that are over-provi-
sioned with respect to the permissions of the group can
be removed from the over-provisioned groups to main-
tain least privilege. Further, one can revoke any of the
permissions from the over-provisioned groups of users
that are not used by a pre-determined fraction of the
users in the over-provisioned groups.

h. Identify overly generic policy items: Similar to the iden-
tified policy overprovisioning, when confidentiality is
important, the overly generic policy items should be
replaced with finer grained policy items. I[favailability is
important, it may be desirable to maintain the overly
generic policy items, or find an intermediate state.
Overly permissive policy items (identified as described
above) can be rewritten to only apply to a minimal set of
permissions that are actually accessed in a given period
of time so as to maintain least privilege.

i. Tracking of policy changes: This is a continuous metric
that is applied for every authorization change. If users
are primarily granted or revoked authorizations, the
administrator can be prompted to verification. Users
who are only granted new authorizations may be chang-
ing positions, and may retain old entitlements that
should be revoked. When incomplete revocations are
identified (see above) it is preferable to revoke all of the
policy items which apply to the same permissions as the
incomplete revocations so as to decrease operational
risk.

j. Attribution: When new authorizations are added and the
user is too dissimilar to the others assigned the policy
item, we prompt the administrator to ensure of change. If
the administrator confirms the addition, the attribution
model for the group is retrained for the added user.

10

15

20

25

30

35

40

45

50

55

60

16

k. Conflict Detection: When an administrator makes a
change to a policy that results in conflicting policy items,
or alters an existing policy item, the administrator is
prompted to obtain confirmation. The administrator may
be provided with an analysis of which rules are interact-
ing, and how they will be combined, possibly using
examples from the audit logs. The administrator can
confirm they understand the changes they are suggest-
ing.

1. Inferred Role Changes: If the inferred roles mined from
the usage logs change over time, the administrator
should be alerted to the change and new policy groups,
possibly derived from the inferred roles, suggested to the
administrator as alternatives. Deviation Between
Groups and Inferred Roles: If the deviation between the
inferred roles mined from usage logs and the groups
defined in the security policy deviate beyond a threshold
t, the administrator should be alerted that the behavioral
patterns of the users and the defined security policy are
not in alignment. A new group, derived from the inferred
roles, may be suggested to the administrator. For
instance, the groups and roles that differ from the roles
inferred from the actual permission usage (e.g., by a
amount greater than a pre-determined threshold) can be
eliminated, and conversely, a new group can be created
in the security policy for these inferred roles that has the
same users as the inferred roles and who are assigned the
exact same permissions.

FIG. 7 is a diagram illustrating an exemplary methodology
700 for identifying over-provisioning (i.e., over-provisioned
permissions, users, and groups) in a security policy based on
usage logs. The details of identifying over-provisioned per-
missions, over-provisioned users, and over-provisioned
groups were provided above. Methodology 700 provides one
exemplary flow of how the over-provisioning analysis (based
on the above described analytics) can be carried out. Meth-
odology 700 may be carried out by an apparatus such as
apparatus 1000 of FIG. 10.

Instep 702, the usage logs are obtained. As provided above,
the usage logs reflect how the permissions/entitlements are
actually being used. In step 704 a determination is made, for
each of user-permissions, as to whether the user uses the
permission at least t times. If the user uses the permission at
least t times, then as per step 706, the permission is deter-
mined not to be over-provisioned. On the other hand, if the
user does not use the permission at least t times, then as per
step 708, the permission is determined to be over-provi-
sioned.

Next, in step 710, the number of permissions that are over-
provisioned is obtained and in step 712 a determination is
made as to whether the number of over-provisioned permis-
sions is greater than a fraction f. If the number of over-
provisioned permissions is greater than a fraction f, then as
per step 714, the user is determined to be over-provisioned.
On the other hand, if the number of over-provisioned permis-
sions is less than a fraction f, then as per step 716, the user is
determined not to be over-provisioned.

Next, in step 718 the number of over-provisioned users is
obtained and in step 720 a determination is made as to
whether the number of over-provisioned users is greater than
afraction g. If the number of over-provisioned users is greater
than a fraction g, then as per step 722, the group (to which the
user belongs) is determined to be over-provisioned. On the
other hand, if the number of over-provisioned users is less
than a fraction g, then as per step 724, the group (to which the
user belongs) is determined not to be over-provisioned.

US 9,246,945 B2

17

FIG. 8 is a diagram illustrating an exemplary methodology
800 for identifying overly permissive policy items in a secu-
rity policy based on usage logs. The details of identifying
overly permissive policy items groups were provided above.
Methodology 800 provides one exemplary flow of how an
evaluation of policy items in a security policy to identify
over-permissive items can be carried out. Methodology 800
may be carried out by an apparatus such as apparatus 1000 of
FIG. 10.

In step 802, the policy items from the security policy are
obtained. In step 804 a list of all of the resources (to which the
policy items pertain) is obtained. In step 806, a list of
resources granted by the policy items is obtained based on the
usage logs. As provided above, the usage logs reflect how the
permissions are actually being used.

In step 808, one obtains a fraction of the resources granted
by one or more of the policy items but not accessed (by users)
and in step 810, a determination is made as to whether the
fraction (obtained in step 808) is greater than a threshold t.

If the fraction of the resources granted by one or more of
the policy items but not accessed is greater than t, then as per
step 812, the policy is considered to be overly permissive. On
the other hand if the fraction of the resources granted by one
or more of the policy items but not accessed is less than t, then
as per step 814, the policy is considered to be not overly
permissive.

FIG. 9 is a diagram illustrating an exemplary methodology
900 for determining whether groups in the security policy
match roles inferred from usage (e.g., using role mining). The
details of groups defined in the security policy and roles
inferred from usage logs were provided above. Methodology
900 provides one exemplary flow of how to leverage that data
to evaluate whether groups (in the security policy) are con-
sistent with inferred roles. Methodology 900 may be carried
out by an apparatus such as apparatus 1000 of FIG. 10.

In step 902, usage log data is read. As provided above, the
usage logs indicate how the permissions are actually being
used.

In step 904, the log data (read in step 902) is divided into n
different time windows. This provides a temporally aspect to
the analysis. In step 906, the roles are inferred (from the log
data) for each of the time windows. As provided above, an
exemplary technique for inferring roles in this manner is
through role mining.

In step 908, data from the security policy is read. In step
910, the group structure is extracted from the security policy.
The group structure defines the individual groups specified in
the security policy, as provided above.

In step 912, the policy items in the security policy are
weighted using the logs (i.e. so as to indicate, based on actual
usage, which of the policy items were used more than others,
and vice-a-versa). In step 914, the groups (extracted in step
910) are compared with the inferred (e.g., mined) roles (from
step 906) and in step 916 a determination is made, for each
group from the security policy, whether the group has a
matching role.

If the group has a matching role, then as per step 918, the
usage (based on the log data from step 902) is in compliance
with the group. On the other hand, if the group does not have
a matching role, then as per step 918, the usage is not in
compliance with the group.

As provided above, the roles can be mined/inferred for
each of multiple time windows n. Thus, methodology 900
may be carried out for different time periods, thus providing
a temporal component to the analysis of FIG. 9.

Turning now to FIG. 10, a block diagram is shown of an
apparatus 1000 for implementing one or more of the meth-

15

20

25

40

45

55

65

18

odologies presented herein. By way of example only, appa-
ratus 1000 can be configured to implement one or more of the
steps of methodology 100 of FIG. 1 for managing a security
policy having multiple policy items, methodology 700 of
FIG. 7 for identifying over-provisioning (i.e., over-provi-
sioned permissions, users, and groups) in a security policy
based on usage logs, methodology 800 of FIG. 8 for identi-
fying overly permissive policy items in a security policy
based on usage logs and/or methodology 900 of FIG. 9 for
determining whether groups in the security policy match
roles inferred from usage (e.g., using role mining).

Apparatus 1000 includes a computer system 1010 and
removable media 1050. Computer system 1010 includes a
processor device 1020, a network interface 1025, a memory
1030, a media interface 1035 and an optional display 1040.
Network interface 1025 allows computer system 1010 to
connect to a network, while media interface 1035 allows
computer system 1010 to interact with media, such as a hard
drive or removable media 1050.

As isknown in the art, the methods and apparatus discussed
herein may be distributed as an article of manufacture that
itself includes a machine-readable medium containing one or
more programs which when executed implement embodi-
ments of the present invention. For instance, when apparatus
1000 is configured to implement one or more of the steps of
methodology 100 the machine-readable medium may contain
a program configured to (a) map permissions to the policy
items which apply to usage of the permissions so as to deter-
mine which of the permissions are granted to groups of users
by each of the policy items; (b) identify at least one of the
policy items mapped in step (a) that is in violation of least
privilege based on a comparison of an actual permission
usage with the security policy; (c) identify at least one of the
policy items mapped in step (a) that increases operational
risk; (d) verify that policy constructs in the security policy are
consistent with policy constructs inferred from the actual
permission usage; and (e) identify optimizations of the secu-
rity policy based on output from one or more of steps (a)-(d).

The machine-readable medium may be a recordable
medium (e.g., floppy disks, hard drive, optical disks such as
removable media 1050, or memory cards) or may be a trans-
mission medium (e.g., a network comprising fiber-optics, the
world-wide web, cables, or a wireless channel using time-
division multiple access, code-division multiple access, or
other radio-frequency channel). Any medium known or
developed that can store information suitable for use with a
computer system may be used.

Processor device 1020 can be configured to implement the
methods, steps, and functions disclosed herein. The memory
1030 could be distributed or local and the processor device
1020 could be distributed or singular. The memory 1030
could be implemented as an electrical, magnetic or optical
memory, or any combination of these or other types of storage
devices. Moreover, the term “memory” should be construed
broadly enough to encompass any information able to be read
from, or written to, an address in the addressable space
accessed by processor device 1020. With this definition,
information on a network, accessible through network inter-
face 1025, is still within memory 1030 because the processor
device 1020 can retrieve the information from the network. It
should be noted that each distributed processor that makes up
processor device 1020 generally contains its own addressable
memory space. It should also be noted that some or all of
computer system 1010 can be incorporated into an applica-
tion-specific or general-use integrated circuit.

US 9,246,945 B2

19

Optional display 1040 is any type of display suitable for
interacting with a human user of apparatus 1000. Generally,
display 1040 is a computer monitor or other similar display.

In conclusion, a novel approach is provided herein to verify
the enforcement of security policies and that usage of permis-
sions meets desired high level goals. Rather than focus on
using formalisms to prove desirable properties of the policy,
its enforcement, and usage, an analytics based method is
provided herein which attempts to ensure that the usage of
permissions is consistent with the configured policy and that
the configured policy is following the principle of least privi-
lege.

A number of analytic techniques have been proposed
herein to achieve this goal. One key analytic is to ensure that
the group definitions in the policy correspond to actual roles
mined from usage. This analytic measures the relevance of
the role definitions as configured in the policy. A number of
other techniques geared toward ensuring the configured
policy satisfies least-privilege are proposed. These include
identifying groups that are: redundant; unused; overly
generic; and over provisioned.

The present techniques can be used to narrow a policy to
enable just the actions that are necessary, enforcing least
privilege and reducing ambiguity to reduce administrative
risk. The present techniques are far easier for a security
administrator to use than a formal methods-based approach.
On the other hand, the instant analytic techniques are far more
sophisticated than typical compliance monitoring products
which can, at best, only enforce simple compliance condi-
tions.

Although illustrative embodiments of the present invention
have been described herein, it is to be understood that the
invention is not limited to those precise embodiments, and
that various other changes and modifications may be made by
one skilled in the art without departing from the scope of the
invention.

What is claimed is:

1. A computer-implemented method for managing a secu-
rity policy having multiple policy items, the method compris-
ing the steps of:

(a) mapping permissions to the policy items which apply to
usage of the permissions so as to determine which of the
permissions are granted to groups of users by each ofthe
policy items;

(b) identifying at least one of the policy items mapped in
step (a) that is in violation of least privilege based on a
comparison of an actual permission usage with the secu-
rity policy, wherein least privilege specifies that the
users are only given privileges that are needed to execute
their functions;

(c) identifying at least one of the policy items mapped in
step (a) that increases operational risk;

(d) verifying that policy constructs in the security policy
are consistent with constructs that are inferred from the
actual permission usage; and

(e) identifying optimizations of the security policy based
on output from one or more of steps (a)-(d),

wherein steps (a)-(e) are performed using a hardware pro-
cessor with memory.

2. The method of claim 1, wherein the step (b) of identify-
ing at least one of the policy items that is in violation of least
privilege comprises the step of:

identifying at least one of the policy items as being redun-
dant, wherein a redundant policy item is a given one of
the policy items which specifies an action regarding one
ormore of the permissions that is also specified by one or
more other of the policy items but which have higher

w

10

20

25

30

35

40

45

50

55

60

65

20

priority than the given policy item in an access control
decision, and thereby violates least privilege.

3. The method of claim 1, wherein the step (b) of identify-
ing at least one of the policy items that is in violation of least
privilege comprises the step of:

identifying which of the policy items were used to autho-

rize access requests during a given time period and
therefore are relevant policy items, and which of the
policy items were not used to authorize access requests
during the time period, but which do permit access to
some resources and are non-relevant policy items in
violation of least privilege.

4. The method of claim 1, wherein the step (b) of identify-
ing at least one of the policy items that is in violation of least
privilege comprises the step of:

identifying users who have more than a pre-determined

threshold fraction of the permissions which the users
either 1) do not use, or ii) use less than some pre-deter-
mined threshold number of times during a given time
period and thus are over-provisioned users in violation
of least privilege.

5. The method of claim 4, wherein the over-provisioned
users are identified based on logs of the usage of the permis-
sions and the security policy and by measuring a number of
the permissions to which each of the users has access but does
not use.

6. The method of claim 4, wherein the step (b) of identify-
ing at least one of the policy items that is in violation of least
privilege comprises the step of:

identifying one or more of the groups of users that contain

greater than a pre-determined threshold fraction of users
in the groups who are over-provisioned users with
respect to the permissions assigned to the groups and
thus are over-provisioned groups of users in violation of
least privilege.

7. The method of claim 6, further comprising the step of:

determining whether a user in a given one of the groups of

users is over-provisioned with respect to the permissions
of the group by identifying if the user either 1) does not
use, or ii) uses less than a pre-determined threshold
number of times, more than a pre-determined threshold
fraction of the permissions assigned to the given group.

8. The method of claim 7, wherein the over-provisioned
groups of users are identified by monitoring how often each of
the users in a given one of the groups of users uses a policy
item assigned to the users through the particular group to
which the users belong.

9. The method of claim 1, wherein the step (b) of identify-
ing at least one of the policy items that is in violation of least
privilege comprises the step of:

identifying a given one of the policy items which is overly

permissive in the number of resources to which the given
policy item grants access, and thus in violation of least
privilege, by determining if more than a first pre-deter-
mined threshold fraction of users who are granted access
to one or more of the permissions through the given
policy item use less than a second pre-determined
threshold fraction of the permissions granted by the
given policy item within a given period of time.

10. The method of claim 1, wherein the step (c) of identi-
fying at least one of the policy items that increases operational
risk comprises the step of:

tracking changes to the security policy based on logs of the

usage of the permissions and the security policy to deter-
mine an impact the changes to the security policy have
on the usage of the permissions.

US 9,246,945 B2

21

11. The method of claim 10, wherein the changes to the
security policy comprise revocations of one or more of the
permissions from one or more users or one or more of the
groups of users, the method further comprising the step of:

identifying the revocations that are incomplete because one

or more of the policy items which subsume the revoca-
tion continue to grant access to resource which have
been revoked and are therefore incomplete revocations
which increase operational risk.

12. The method of claim 11, wherein the changes to the
security policy comprise assigning one or more of the per-
missions to a new user, the method comprising the step of:

determining whether the new user has attributes which are

similar to existing users who have already been assigned
the permissions being granted to the new user.

13. The method of claim 12, further comprising the steps
of:

using an aggregate distance function to determine a simi-

larity in attributes between the new user and the existing
users; and

determining based on the aggregate distance function if

(A) a distance for any single attribute exceeds a given
threshold t; (B) an aggregate distance exceeds the
threshold t; or (C) at least n of the attributes are not
within the threshold t, wherein if any one of (A)-(C) are
true then the new user is considered to be dissimilar to
the existing users and assigning the one or more permis-
sions to the new user will increase operational risk.

14. The method of claim 1, wherein the step (d) of verifying
that the policy constructs in the security policy are consistent
with the constructs that are inferred from the actual permis-
sion usage comprises the step of:

comparing groups and roles in the policy constructs in the

security policy with roles inferred from the actual per-
mission usage to determine an amount by which the
groups and roles in the security policy and the roles
inferred from the actual permission usage differ.

15. The method of claim 14, wherein the roles are inferred
from the actual permission usage using role mining.

16. The method of claim 14, wherein the amount by which
the groups and roles in the security policy and the roles
inferred from the actual permission usage differ is determined
by computing an aggregate root mean square error (RMSE)
for a vector-wise comparison given an optimal role mapping
between the groups and roles in the security policy with the
roles inferred from the actual permission usage.

17. The method of claim 14, wherein the groups and roles
in the security policy that differ from the roles inferred from
the actual permission usage by an amount that is greater than
a pre-determined threshold are marked as an non-compliant
groups and roles.

10

15

20

25

30

35

40

45

50

22

18. The method of claim 2, wherein the step (e) of identi-
fying optimizations of the security policy comprises the step
of:

eliminating the policy items identified as being redundant.

19. The method of claim 3, wherein the step (e) of identi-
fying optimizations of the security policy comprises the step
of:

eliminating the non-relevant policy items.

20. The method of claim 4, wherein the step (e) of identi-
fying optimizations of the security policy comprises the step
of:

revoking the permissions that the over-provisioned users

have that the over-provisioned users 1) do not use, or ii)
use less than the pre-determined threshold number of
times during the given time period.

21. The method of claim 7, where in the step (e) of identi-
fying optimizations of the security policy comprises the step
of:

removing the users from the over-provisioned groups of

users that are over-provisioned with respect to the per-
missions of the group.

22. The method of claim 6, where in the step (e) of identi-
fying optimizations of the security policy comprises the step
of:

revoking any of the permissions from the over-provisioned

groups of users that are not used by a pre-determined
fraction of the users in the over-provisioned groups.

23. The method of claim 9, where in the step (e) of identi-
fying optimizations of the security policy comprises the step
of:

rewriting each of the policy items which are identified as

being overly permissive to only apply to a minimal set of
permissions that are actually accessed in a given period
of time.

24. The method of claim 11, where in the step (e) of
identifying optimizations of the security policy comprises the
step of:

revoking all of the policy items which apply to same per-

missions as the incomplete revocations.

25. The method of claim 17, where in the step (e) of
identifying optimizations of the security policy comprises the
steps of:

eliminating the groups and roles from the security policy

that differ from the roles inferred from the actual per-
mission usage by the amount that is greater than the
pre-determined threshold; and

for the roles inferred from the actual permission usage that

differ from the groups and roles from the security policy
by the amount that is greater than the pre-determined
threshold, creating a new group in the security policy
with a same group of users and permissions as the roles
inferred from the actual permission usage.

#* #* #* #* #*

